
Object-Oriented Fun
Educator’s Guide

Students should have completed the Conditional Schedule activity, which introduces the
concept of if-then statements.

Prerequisite Knowledge

Overview

Lesson Details
At Decomposphere, students will learn to break problems down into smaller parts with
Dot. Students will learn the fundamentals behind object-oriented programming using
variables, functions, and classes. Then, students will play a Mystical Elements card game,
where each card represents a card object with its own traits and attributes.

This lesson was developed for students ages 8 to 13, and can be modified for students of
all skills and ages. This lesson takes around 30 minutes.

CS Hands-On is a 501(c)(3) nonprofit teaching computational thinking skills through
technology-free lessons and activities. This curriculum is built to teach fundamental
computer science concepts in an engaging, hands-on way. In this mission, students use
object-oriented programming to play a card game.

Key Question

Key Terms

Curriculum Standards

Learning Objectives

Students should be able to...
� Explain how object-oriented programming is used (Decomposition)

� Read, write, and interpret objects (Literacy)
� Use object-oriented programming to play a card game (Creative Arts)

How can we use object-oriented programming to create different objects?

View standards addressed here

Object-oriented programming: A programming model used to break down objects
into their own unique variables and functions

Decomposphere
Mission 2: Educator’s Guide

CS Hands-On 1Object-Oriented Fun Educator Guide

Object-Oriented ProgrammingVariables Encapsulation

https://docs.google.com/spreadsheets/d/1q_79QLFOCdAf8ABs0ntrwWIzXoD6SzIFWnVaQmTBtHI/edit#gid=0

Object-Oriented Fun

Welcome back to the scenic landscape of Decomposphere! Get ready to follow Dot
around in his Dot-mobile to learn about object-oriented programming.

Drivin’ Around Decomposphere

In Decomposphere, Dot and his friends love driving around town and catching the
summer breeze. Let’s take a deeper look at object-oriented programming through
Dot’s car: the Dot-mobile!

We can use object-oriented programming to model objects using variables and
functions. We can represent just about anything using variables and functions, from
cars to dogs to houses!

Vroom Vroom...

More cars!

COLOR

STO
P

START STO
P

START

Green

Dot-mobile is our object These are our object’s
(Dot-mobile’s)
variables

SEATS

4
OWNER

Dot

Starts the engine
when the gas
pedal is pressed

Stops when
the brakes are
pressed

These are our object’s
(Dot-mobile’s) functions

Looking at the complete picture, Dot-mobile belongs to a
large group of cars. Since all of these cars share similar
features, we can create specific types of vehicles like the

On the right, we can see that the Dot-mobile,
minivan, and taxi are all different types of cars.

Dot-mobile Minivan

Car

Taxi

Parent
object

Child objects

Decomposphere
Mission 2 Name: Date:

CS Hands-On 1Object-Oriented Fun

Lesson Plan

� Object-Oriented Fun worksheet (per student)

Materials

� Hand out an Object-Oriented Fun worksheet to each student

� Set up your classroom to form students in groups of 2

Setup

ANSWER KEY & LESSON ANNOTATIONS

Decomposphere
Mission 2: Educator’s Guide

CS Hands-On 2Object-Oriented Fun Educator Guide

Using our Dot-mobile object, how
can we change the properties to
create our own Dot-mobile?

We can change the object’s
variables (color, seats, owner) and
functions (start, stop) to create our
own personalized Dot-mobile.

Reflect

Object-Oriented ProgrammingVariables Encapsulation

We call the car our parent object because it passes down shared variables and functions
to its child objects.

Let’s take a closer look at the parent object:

Since all cars have a specific
color, number of seats, owner,
and can start and stop, every
child car (the Dot-mobile,
Minivan, and Taxi) shares the
same structure as the parent
car.

Car Variables

Functions
Start

Color

Seats

Owner

Stop

Programs often have lots of code, which can become
messy and complicated. When we have similar objects
that share similar qualities but are not exactly the same,
we can use inheritance (the passing down of features) in
object-oriented programming to take the features of a
parent object and apply them to its child objects. This
template saves us time when creating child objects.

Referencing back to our car example, we can use our
parent car object to create other cars like limousines or
electric cars!

Why is Object-Oriented Programming useful?

Dot-mobile, Minivan, and Taxi (these are called child objects) from the car (this is called
the parent object).

Decomposphere
Mission 2

CS Hands-On 2Object-Oriented Fun

Decomposphere
Mission 2: Educator’s Guide

CS Hands-On 3Object-Oriented Fun Educator Guide

Can you think of other variables
and functions that a car would
pass down to its child objects?

Ex. Variables: Number of windows,
price, brand

Functions: Honk, wiping windows,
turning on headlights

Reflect

Object-oriented programming can
be used to describe many different
scenarios and objects. Encourage
your students to brainstorm
different objects that this thinking
can be applied to.

Educator’s Note

Object-Oriented ProgrammingVariables Encapsulation

Decomposphere
Mission 2: Educator’s Guide

CS Hands-On 4Object-Oriented Fun Educator Guide

Decomposphere
Mission 2

CS Hands-On 3Object-Oriented Fun

Let’s Review Functions!
A function includes actions used to complete a task. Here’s a quick refresher on how we
can create our own functions:

Press the button at the
middle of the steering wheel

Include a descriptive titleHonk a Car HornWrite the steps
necessary to
accomplish our
function

Object-Oriented ProgrammingVariables Encapsulation

Decomposphere
Mission 2: Educator’s Guide

CS Hands-On 5Object-Oriented Fun Educator Guide

Object-Oriented ProgrammingVariables Encapsulation

VARIABLES
Name = Lex

Home = Logicland

Element = Snow

FUNCTION
Icy Attack
Freezes water into
large ice crystals

VARIABLES
Name = Ellis

Home = Evaluatus

Element = Water

FUNCTION
Whopping Waves
Destroys fire with a
tide of waves

VARIABLES
Name = Dot

Home = Decomposphere

Element = Water

FUNCTION
Water Spiral
Destroys fire with a
tornado of water

VARIABLES
Name = Ansel

Home = Algorithopoly

Element = Fire

FUNCTION

VARIABLES
Name = Alon

Home = Abstractopia

Element = Snow

FUNCTION

VARIABLES
Name = Pancho

Home = Patteron

Element = Fire

FUNCTION
Fire Frenzy
Melts snow with a
blazing fire

VARIABLES
Name =

Home =

Element = Water

FUNCTION

VARIABLES
Name =

Home =

Element = Fire

FUNCTION

VARIABLES
Name =

Home =

Element = Snow

FUNCTION

Snowstorm
Freezes water with a
gust of snow

 ________________ ________________ ________________

Fireball
Melts snow with a
mighty ball of fire

CS Hands-On 5Object-Oriented Fun

MYSTICAL ELEMENTS CARDS

Use your knowledge of object-oriented programming to play a fun game of Mystical
Elements with a friend! The first six cards each represent an object (a character from our
six planets) with its unique variables and functions on your Card sheet. Each function is a
superpower that relates to water, snow, or fire.

Mystical Elements: The Game

Setup

How to Play

� Customize three different child objects on your Card sheet
from the parent Card object. Assign your child objects
variables (name and home) and a superpower function!

� From your nine cards, pick one card to play and place it face down.

� Once both of you have placed your cards down, flip them face up and compare
your object’s element variable to decide the winner! Water puts out fire, fire
melts snow, and snow freezes water.

� The player who wins the round takes both cards.

� The player with the most cards wins!

Ex. Water beats fire

Water card

card Group

Traits
Name

home
element

superpowerAction

Fire card

Water beats fire

Fire beats snow

Snow beats water

� Once you finish customizing your child object cards, carefully
cut the cards out along dashed lines.

WINNER

CS Hands-On 4Object-Oriented Fun

Decomposphere
Mission 2

